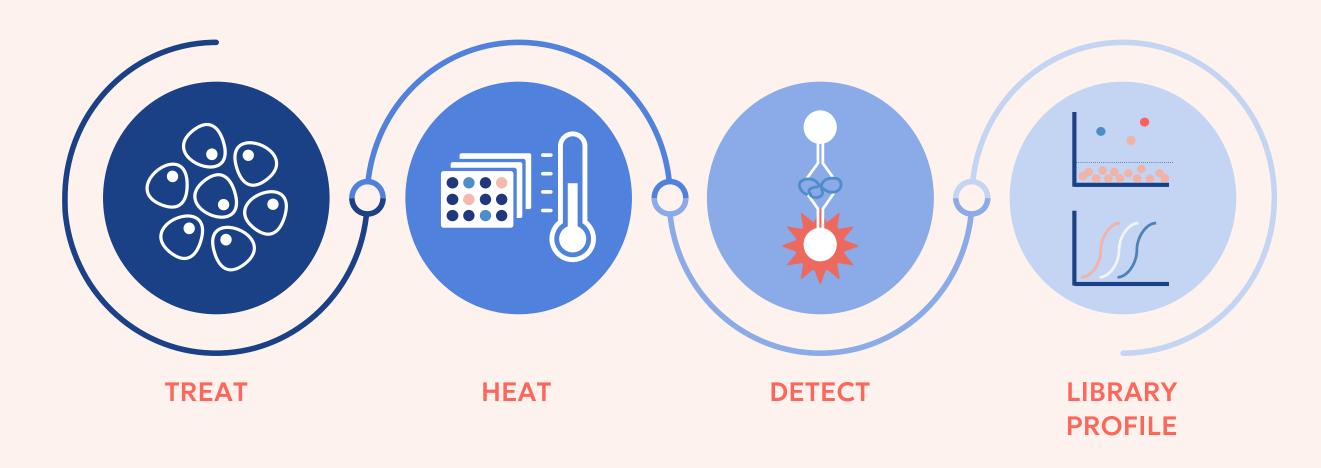
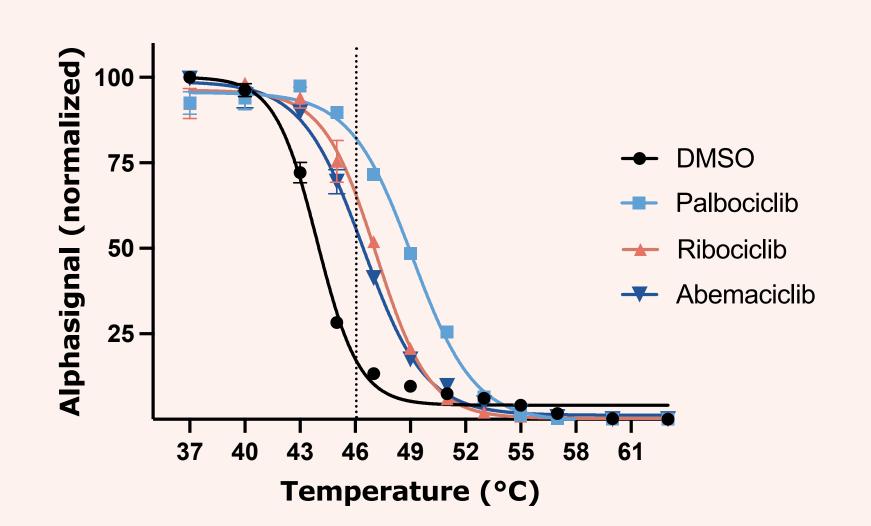
ENHANCING PRIMARY SCREENING WITH CETSA®

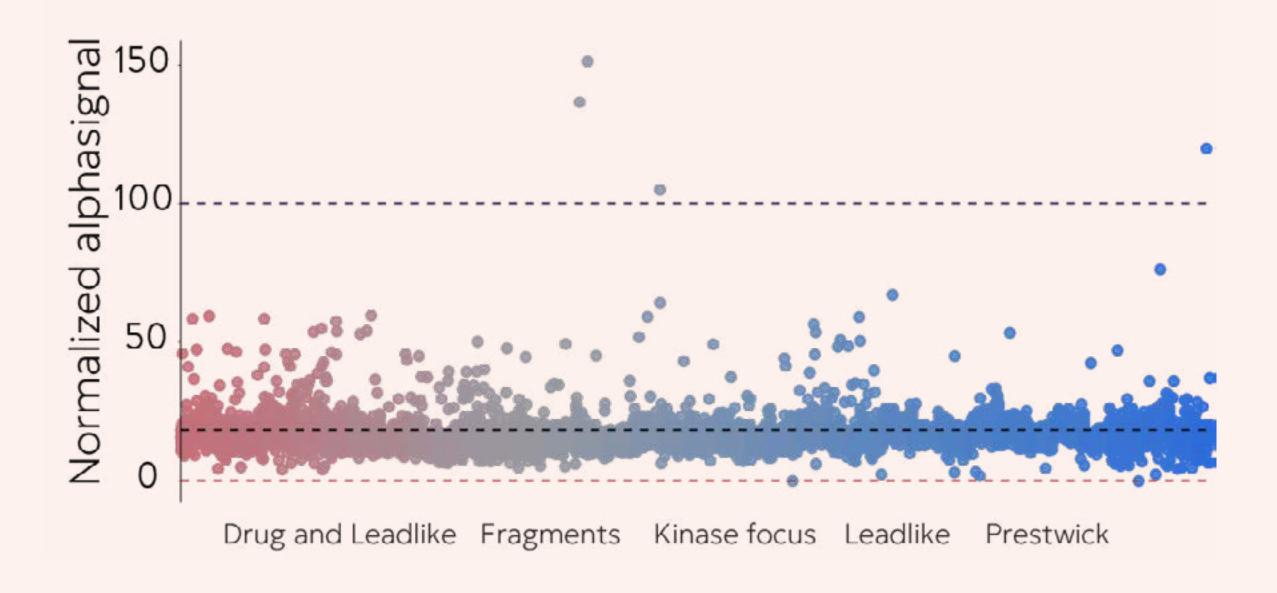

INTRODUCTION TO CETSA

- Cellular Thermal Shift Assay (CETSA) is a patented label-free technology that assesses protein-ligand interactions in the native cellular environment.
- Provides target engagement (TE) confirmation in physiological settings, aiding decision-making in drug discovery.

High-throughput CETSA format enables:


- Screening and profiling large sets of drug molecules.
- Single-point (SP) data for large library screening.
- Concentration-response (CR) data to determine TE potency.
- Rapid and efficient identification of high-quality hits.

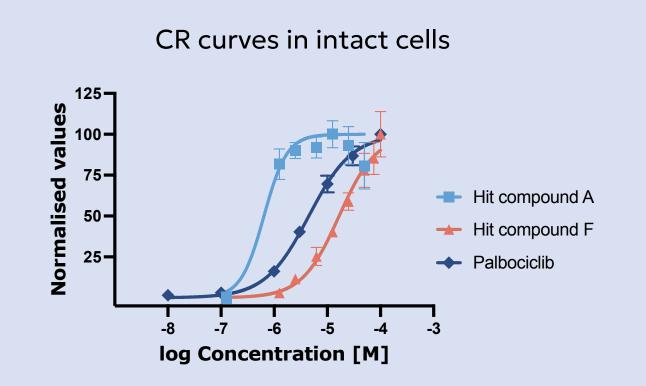
CASE STUDY

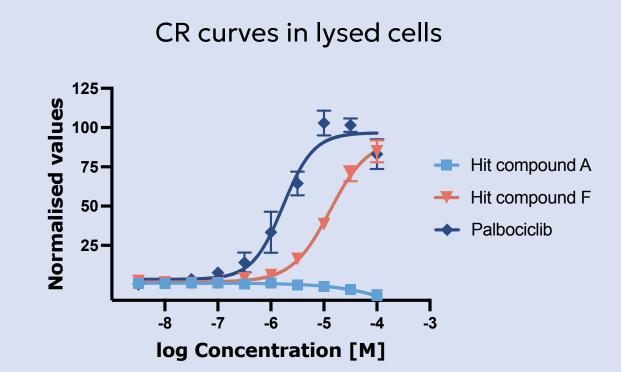

Primary screening applied to CDK4, a known target of interest in several cancers, demonstrating CETSA's effectiveness in hit identification and validation.

- CETSA assay developed in intact THP1 cells and AlphaLISA® SureFire® Ultra™ detection kit.
- Assay validation using three tool compounds by generation of melt and shift curves.
- Clear thermal shifts observed, leading to the selection of 46°C as screening temperature.

SCREENING STRATEGY

- \bullet 12,000 structurally diverse compounds tested at 50 μM .
- Hit rate: 1.2% with Z'-factor > 0.8.
- •>90% of preliminary hits confirmed in secondary screening at three concentrations.

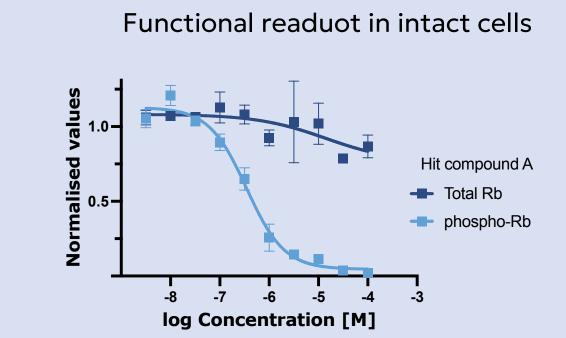



References

- 1. Martinez Molina, D. et al. <u>Science 341, 84-87 (2013)</u>
- 2. Almqvist, H. et al. Nat Commun. 7 (2016)
- 3. Shaw, J. et al. <u>SLAS Discovery 24, 121-132 (2019)</u>
- 4. Goel, S. et al. <u>Nat Rev Cancer 22, 356–372 (2022)</u>

HIT CONFIRMATION

- Fullconcentration-response (CR) curves generated in intact cells for Palbociclib (reference) and selected hits (data for compounds A and F shown below).
- CR curves also generated in cell lysates to assess direct CDK4 binding.
- Data suggests identified hits represent distinct chemotypes with different mechanisms of action.



FOLLOW-UP STUDIES

- Functional studies performed to confirm biochemical and cellular impact of hits.
- Recombinant CDK4 activity expected to decrease.
- CDK4 inhibition expected to decrease phosphorylation of Rb (retinoblastoma protein).

Results:

- No inhibition of recombinant CDK4 activity observed with hit compound A
- Rb phosphorylation decreased without affecting total Rb protein levels
- Functional validation strengthen the hypothesis of different mechanism of actions

SUMMARY TABLE OF EXAMPLE HITS

Compound ID	Structure	CETSA® EC ₅₀ (μM) Intact cells	CETSA® EC ₅₀ (μM) Lysate	p-Rb inhib. IC ₅₀ (μM)	Calculated properties				
					MW	clogP	HBA	HBD	PSA
A	S-N,N NH R	0.7	Inactive	0.4	400	5.3	5	1	92
В	$\mathbb{R} \stackrel{\mathbb{R}}{\longrightarrow} \mathbb{R} \stackrel{\mathbb{N}}{\longrightarrow} \mathbb{R} \stackrel{\mathbb{N}}{\longrightarrow} \mathbb{R}$	15	Inactive	>50	361	3.8	5	2	65
c	R S G	4.6	Inactive	31	445	4.6	5	2	111
D	R H O H R P R	0.9	Inactive	11	483	3.1	8	2	129
E	O N R	30	39	n.d.	270	0.9	5	2	63
F		3.6	1.3	n.d.	241	0.4	5	2	67
G		3.2	1.5	n.d.	211	0.4	4	2	57
Palbociclib	O C C C C C C C C C C C C C C C C C C C	5	1.7	1	447	2.0	9	2	103

CONCLUSIONS

- CETSA ASSAY SUCCESSFULLY ESTABLISHED FOR CDK4 HIT IDENTIFICATION.
- •BOTH KNOWN AND NOVEL CHEMOTYPES WITH CDK4-DRIVEN CELLULAR EFFECTS.
- •PLANNED NEXT STEPS:
- MECHANISM-OF-ACTION DECONVOLUTION (E.G., SELECTIVITY PROFILING VIA PROTEOME-WIDE CETSA).
- BROAD APPLICABILITY OF CETSA TO NATIVE, FULL-LENGTH PROTEIN TARGETS IN LIVE-CELL ENVIRONMENTS.

ADVANTAGES OF CETSA

- •IDENTIFIES HIGH-CONFIDENCE HITS WITH HIGHER SUCCESS RATES IN LATER DEVELOPMENT.
- ENABLES SCREENING OF A WIDE RANGE OF PROTEINS, INCLUDING HARD-TO-DRUG TARGETS.
- POTENTIAL FOR NOVEL CHEMISTRY DISCOVERY IN PREVIOUSLY UNDRUGGABLE PROTEINS.